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Background and Motivation

• X-ray scattering is an important tool for scientists to probe structural
properties of materials at nano-scales.

• SAXS, Small Angle X-ray scattering, is a widely used type.

• SAXS is primarily used for non-crystalline/amorphous materials.

• Data challenge: Currently about 25-50 TB / month of raw data from
ONE beamline, and growing nearly exponentially. A Synchrotron has
10s-100 beamlines.

• Beamline scientists have not had HPC resources available. Need to
bridge the gap.

• Many materials are too complex to use sophisticated modeling
techniques.

• Reverse Monte Carlo simulation works well with SAXS data.
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The General RMC Modeling Algorithm
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Faster Updates of Fourier Transform
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A Scaled RMC Modeling Algorithm
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A Scaled RMC Modeling Algorithm
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Autotuned Model Temperature

High-Performance Inverse Modeling with Reverse Monte Carlo Simulations. ICPP’14 asarje @ lbl.gov



Introduction The RMC Methodology A High-Performance RMC Parallel RMC Performance Conclusions

Distributed-Memory Parallelization over Multiple Tiles

• MPI for distributed memory level.
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Distributed-Memory Parallelization over Multiple Tiles
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Distributed-Memory Parallelization of a Single Tile
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Subtile Implementations

• Two main types of kernels:
1 Data parallel.
2 Reduction.

• Multicore CPU implementation with OpenMP.

• Graphics Processor (GPU) implementation with Nvidia CUDA.
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Validation with Model Reconstruction

Actual
Models
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Validation with Model Reconstruction
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Model Reconstruction

Simulated and Experimental Patterns Computed Model
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Experimental Performance: Environment

• All computations are in double precision.

1 Single node platform:
• Dual-socket 2.2 GHz 8-core Intel Xeon E5-2660 (Sandy Bridge)
• 16 cores and 32 hardware threads with 2 NUMA regions, and 64 GB RAM
• Nvidia K20X (Kepler) graphics processor.
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Experimental Performance: Number of iterations
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• Tile size of 512 × 512.
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Experimental Performance: Scaling with number of tiles
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• Total of 10,000 iterations.
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Experimental Performance: Scaling with tile size
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• Total of 40,000 iterations.
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Experimental Performance: Environment

1 Multicore CPU cluster:
• Cray XE6 supercomputer (‘Hopper’ at NERSC/LBNL)
• Each node is a dual-socket 2.1 GHz 12-core AMD MagnyCours processors
• 24 cores per node with 4 NUMA domains, and 32 GB RAM

2 GPU cluster:
• Cray XK7 supercomputer (‘Titan’ at OLCF/ORNL)
• Each node is a 2.2 GHz 16-core AMD Opteron 6274 (Interlagos)
• 16 cores per node with 2 NUMA domains, and 32 GB RAM
• One Nvidia K20X (Kepler) GPU on each node.
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Experimental Performance: Weak scaling
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Experimental Performance: Strong scaling
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Conclusions

1 Synchrotron beamlines need HPC for data processing to be efficient.

2 Monte-Carlo and Reverse Monte-Carlo simulations are highly used
methods in scientific computing, and same parallelization techniques
can be applied.

3 RMC works when all other sophisticated methods fail.

4 Reduction operations are nearly one order of magnitude slower on
GPUs compared to multicore CPUs. Better caching and less
synchronizations on CPUs are two primary factors.

5 Even with large number of reduction kernels in the application, at scale
the overall performance on GPUs is about an order of magnitude
better than on multicore CPUs!

High-Performance Inverse Modeling with Reverse Monte Carlo Simulations. ICPP’14 asarje @ lbl.gov



Introduction The RMC Methodology A High-Performance RMC Parallel RMC Performance Conclusions

Future Work

1 Non-binary model reconstruction.

2 3-D structures reconstruction.

3 Time-series fitting.

4 Realtime?

High-Performance Inverse Modeling with Reverse Monte Carlo Simulations. ICPP’14 asarje @ lbl.gov
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Thank you!
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